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Abstract. A simple agent model is introduced by analogy with the mean field approach to the Ising
model for a magnetic system. Our model is characterised by a generalised Langevin equation ¢ = F (¢) +
G (¢) 7 (t) where 7 (t) is the usual Gaussian white noise, i.e.: (7} (¢) 7 (t')) = 2D§ (t —t') and (7 (t)) = 0.
Both the associated Fokker Planck equation and the long time probability distribution function can be

obtained analytically. A steady state solution may be expressed as P (¢) = Lexp{—¥ (¢) —InG(¢)} where

v(p) =
F (@) = Jo + bp? — c® and fluctuations characterised by the amplitude G () = ¢ + ¢ when it readily

yields for ¢ > €, a distribution function with power law tails, viz: P () = %exp{ (2bp — cp®) /D}.
Zlp|"” D
The parameter ¢ ensures convergence of the distribution function for large values of ¢. It might be loosely

associated with the activity of so-called value traders. The parameter J may be associated with the activity
of noise traders. Output for the associated time series show all the characteristics of familiar financial time
series providing J < 0 and D = |J|.

©
—L [F/(G)’dy and Z is a normalization factor. This is explored for the simple case where

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) — 89.65.Gh Economics,

business, and financial markets

1 Introduction

Understanding the distribution of financial price fluctu-
ations is an active topic for physicists [1,2]. It is usual
to introduce the log-return s, (t) = Inp(t +7) — Inp(¢)
where p (t) is the price at time ¢. If price changes are in-
dependent and identically distributed with a well-defined
second moment, it follows from the central limit theo-
rem that the distribution function, P(s) converges to a
normal distribution for large values of 7. However, for
smaller values of 7, there are strong deviations from
normal behavior. On close examination, the distribution
function, P(s), for the log-returns has so-called fat tails.
Mandelbrot [3] suggested that the distribution had char-
acteristics of a Levy distribution, L,(s). For large values
of the argument, Levy distributions show the characteris-
tic Pareto tail that for a symmetric distribution may be
written as follows:

P(s) = Ly(s) = A(n)/|s]'"*" (1)

The parameter p is limited to the range 0 < p < 2. If
@ = 2 then the Levy distribution reduces to a normal
distribution. Pareto tails may, of course, be defined for
values of p > 2. However such functions are not Levy
distributions. For p > 2 the Levy distribution can take
on negative values and is not a stable probability func-
tion. Mandelbrot [3] and Fama [4] concluded from studies
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of daily fluctuations of commodity prices that the associ-
ated distribution function was a stable Levy distribution
with g ~ 1.7. Farmer [5] has recently reviewed the posi-
tion. With the advent of very large data sets taken at ever
decreasing time intervals, a number of investigations are
showing that as 7 increases, the distribution becomes pro-
gressively closer to a Gaussian or normal distribution. For
large returns, however, the distribution does indeed follow
a power law, P (s) ~ 1/|s|**# with u > 2. The distribu-
tion, thus, seems not to be compatible with a Levy dis-
tribution. Some results have recently been published by
Stanley and his colleagues [6,7]. Approximately 40 mil-
lion records were included in their data set. As a result
they were able to examine the power law scaling over ap-
proximately 90 standard deviations and concluded that
the cumulative distribution function satisfies a power law
with p ~ 3, implying that the probability distribution sat-
isfies a power law ~ 4. Power law distributions introduced
by Pareto in the 19th century are clearly approximations.
The distribution function is not integrable at s = 0 and
is not normalizable if the exponent p < 1. A power law
cannot therefore define the exact distribution function for
a variable with an unbounded range. It can be an approx-
imation valid for certain limits.

A number of authors [8-10] have developed dynamic
models of the trading process where the market is as-
sumed to arise from the cumulative actions of individ-
ual traders. Numerical simulation has then been used to
show that such models exhibit distribution functions with
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Pareto-like tails. Such numerical solutions are very pow-
erful and are revealing other aspects of the stochastic
processes involved in trading dynamics. However models
capable of analytic solution, if these can be found, gen-
erally offer greater insight and understanding. Sorin has
recently shown that a model where agents interact via the
classic Lotka-Volterra equations can be explored analyt-
ically and demonstrated clearly how power law distribu-
tion functions follow from this model. Here we present an
approach based on a generalized Langevin equation that
yields such an analytic form for the distribution function.
The solution shows characteristics typical of stock price
distributions including a power law tail regime.

2 Phenomenology for financial markets

The instantaneous price return, s(t), may be expressed as
a function of demand, . Thus s (t) = S (¢) where & is an
increasing function and & (0) = 0. We follow Bouchaud
and Cont [8] and assume that this function can be lin-
earised such that s(t) = ¢ () /A where X is a measure of
market depth or liquidity. We assume, with others, that
agents respond to a force that has its origin in the action
of other traders, i.e. ¢; (t) =" fi; (t). In general, agents

do not have detailed data relatjing to the specific action of
other individual agents and it seems plausible to assume
that agents respond to aggregate demand. Thus we might
propose that: f;; = f;. We make a further simplification
and introduce, by analogy with molecular systems a force
of mean demand, F(plt) = fi(¢) and simply write

¢ (t) = F(elt) (2)
The overall instantaneous time dependent demand
function, F', thus takes into account, the actions of all
agents, be they noise traders who follow the herd, contrary
traders, fundamental or value traders, option traders, etc.
The time dependence may change slowly as market senti-
ment changes. Equally it may change in a more random
manner and it is this random behaviour that concerns
us here. It seems not unreasonable to suppose that the
force responsible for demand will have a stochastic ele-
ment. Anyone who has watched share prices, especially
during periods of high volatility will recognize the way
their approach to buy and sell decisions can be stressed.
In addition, the total force of demand will depend on a
trading volume that is of a stochastic character. Assum-
ing the stochastic process is Markovian, we account for
this via a generalised Langevin equation:

¢ = F(p) + Gle)n(t) (3)
where the random variable 7 is a Gaussian white noise:
(n(@)nt+1)) =2D5(t—t") and (y(t)) =0. (4)

We show in the appendix that the distribution func-
tion, P(p,t) = (p(p, t|n), satisfies the generalized Fokker-
Planck equation

oP 0 0 0
¥

G = D (05 (GP) — 5o (FP).
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This has the steady state solution

P(g) = m expl - ()]

1 (Y F
W(‘P)Z—B/ @dw

and Z is a normalisation factor.

3 lllustrative example

The simplest approximation to choose is G(p) = .
Solomon [10] has shown that if F(p) = 0 then P(p) ~
1/¢. This is not a good distribution function in the sense
that it is not normalisable and we return to this point
below. F(p) will in general not be zero. Our initial sup-
position that there is interaction between agents will also
give rise to terms proportional to ¢.
Assume now that

F(p) = Jp +bp® —cp®. (8)
The first term on the RHS of equation is associated with
direct agent interactions. The second term gives rise to
terms of the kind proposed by Solomon who used the
Lotka-Volterra approach to population dynamics. If ¢
were always positive such a term would be sufficient to
obtain a distribution function that is well behaved for
large values of ¢. However we admit negative values for
 since the demand can be both positive and negative.
To ensure that the distribution function is well behaved
for large negative values of ¢ we include terms of O(¢?).
This has the virtue that our toy financial system cannot
go bankrupt.We ignore here the discussion of other more
realistic and potentially complex options. If the force F
is derived from a potential V' this is equivalent to includ-
ing terms of O(¢*) in the potential — a procedure famil-
iar to physicists versed in theories of critical phenomena.
(Indeed in the case that F' can be derived from a poten-
tial function, V', the Langevin methodology can be con-
structed within the framework of a Hermitian Hamilto-
nian, albeit one that is dissipative) [12]. In any event, we
obtain:

1 L (% (Jp+bp* = cp?)
P(p) = =—exp —/ 9
(¥) = 75 =Pl 5 o
1
= ———5 exp{(2bp — cp2)/D}. (10)
ZlplP
When 1 — J/D < 1 this function clearly cannot

be normalized. The arises from using the approximation
G(¢)= @. and can be resolved by choosing G(p)= ¢ + ¢
where ¢ is a small parameter that allows the model to take
up the familiar Langevin form as ¢ — 0 . The essential
outcome is that P(¢) will reach a maximum value and
no longer diverge as ¢ — 0. Clearly when the exponent of
the exponential is small, power laws emerge naturally from
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this approach. The extent of the deviation of the power
law from unity depends on the ratio of the coupling pa-
rameter, J to its uncertainty as specified by the parameter
D. Furthermore the exponent can take a range of values
depending on the values of J and D. In order that the
power law is greater than 1, as was found by Mandelbrot
and Stanley, it is necessary that J < 0. However there is
no a priori reason why J should not be positive although
such a distribution function would describe a system with
an unusual kind of mean value.

4 Discussion

A number of authors have now published numerical sim-
ulations that illustrate power law tails [13,14] Our simple
model seems to reproduce features found in real markets.
The power law tails appear naturally as a result of our in-
troduction of amplified fluctuations within the Langevin
approach. Numerical results for the time series, that we
shall publish elsewhere, appear to add further support to
the model. Elsewhere we shall also examine the time cor-
relation functions for ¢(¢) and the volatility ©?(t). The
model is also an Ito stochastic process and it is also possi-
ble to apply Ito’s lemma and explore the consequences for
option pricing and volatility smiles. Of particular interest
to a physicist is a greater understanding of the fundamen-
tal origin of stochastic models of the kind explored here
and their position within the general framework of statis-
tical mechanics. This we shall also explore elsewhere.

The work in this paper was presented at Applications of
Physics in Financial Markets-2 Liege, Belgium, July 13-15,
2000 and the author acknowledges support from the European
Commission via grant ERB4001G972936.

Appendix
If
dz
L~ PG+ G0 (A1)
The distribution function, p(z,t) satisfies
dp  0(zp) _
5 + 9% 0 (A.2)
This may be written
dp
E = —Lop - Llp (A3)
where
oF 0 oG 0

Now introduce o (t) such that p(t) = e~ Lota(t). It fol-
lows that

90 _ —V(t)o where V(t) = efo! L e~ kot

= (A.5)
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This equation has the formal solution

o(t) = exp [ /0 t dt’V(t)] (0). (A.6)

We expand the exponential to obtain

o(t) :Wi%/ot.../dt1...dth(tl)...V(tn)o(O). (A7)

Now take the average over 17 and use
(n(t)n(t+t")) =2D5(t) and (n(t)) =0

All odd terms are zero and even terms decompose into
2n!/n!2™ identical terms each containing a product of pair-
wise averages ( [ [ dtdt’V (¢)V (') . As a result we obtain

oo, =% G ()
« //dtdt’ (ViVi), 0(0)

— exp [%//dtdt’ <vtvt,>n} o(0). (A.10)

(A.8)

(A.9)

The exponent can now be computed and shown to re-
duce to

t [ 0G 01?2 ’
1 Lot — Lot
D/o dt'e {_82 +G—8Z} e .

Substituting into (1.22) into (1.17) we obtain

0o ?
% _ Delot {% +G%} e (o (1)), . (A12)

(A.11)

Recall that p(t) = e~ oo (t) and we finally obtain

o {p(t 0 {o(t
7%(75»" = —Lo(p(t)), +e‘L°t7< ;t)>" (A.13)
= —Lo(p(t)),
+D {aa—f + G%} (p(t),- (A.14)
Hence introducing P(t) = (p(1)), we have
%_J;: {%_f+c:%} P — LyP (A.15)
=D <%G{% (GP)) - % (FP). (A.16)

A steady state solution to this equation can be shown
to be
1

P(z) = ZIG0] exp[—¥(2)]

1 [ F

where Z is a normalisation factor.

(A.17)

(A.18)
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